

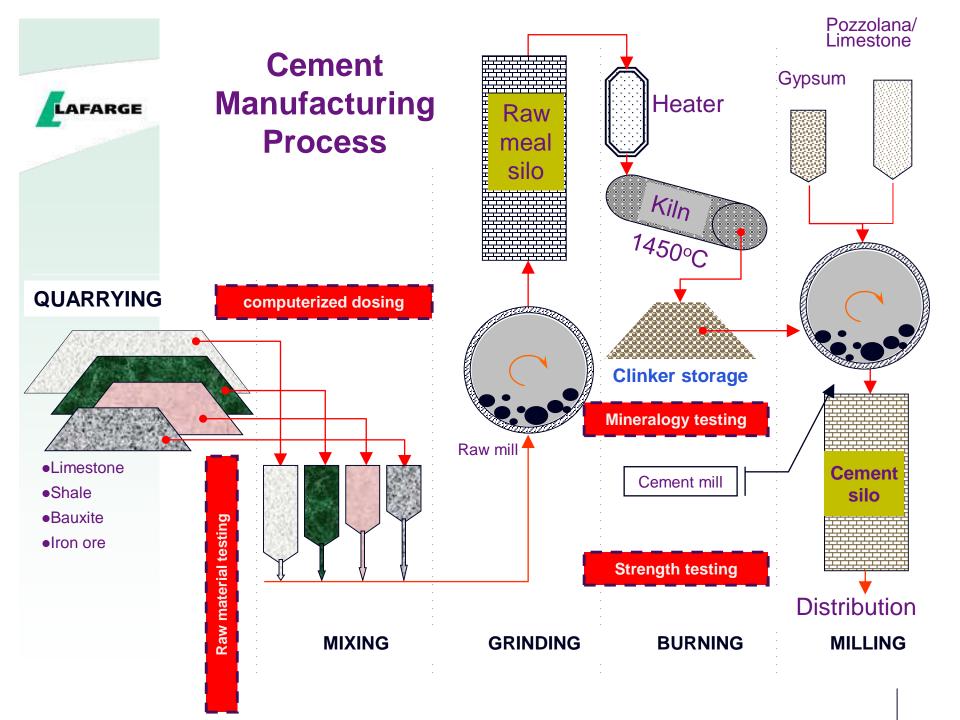
Durability of blended cements in aggressive environments

Fidelis Sakwa

BAMBURI CEMENT, KENYA

Table of contents

- Definition blended portland cements
- Cement manufacturing process
- Types of blended cements
- Sulphate resistance



Blended Portland cement

Definition

Finely ground hydraulic binder in which a well-defined fraction of the Portland cement clinker is replaced by other hydraulic, pozzolanic or non-hydraulic materials

Types of blended portland cements

Extract from KS EAS 18-1 Cement standard

- CEM II : Portland-composite cement
 - Portland-slag cement,
 - Portland-silica fume cement
 - Portland-pozzolana cement
 - Portland-fly ash cement
 - Portland-burnt shale cement
 - Portland-composite cement
 - Portland-limestone cement Inert filler

Components with latent hydraulic properties

Types of blended portland cements

Extract from KS EAS 18-1 Cement standard

- CEM III : Blastfurnace cement
- CEM IV : Pozzolanic cement
- CEM V : Composite cement.

Ordinary Portland cement

• CEM I : Portland cement (Commonly known as OPC)

Types of blended portland cements

Extract from ASTM C595/C595M : blended cements

- Type IS : Portland blastfurnace slag cement,
- Type IP : Portland pozzolan cement
- Type IT : Ternary blends

Extract from ASTM C150 : C150M - OPC

Type I, IA, II and IIA

Components of cement clinker

Description	Notation	Short notation	
Tri-Calcium Silicate	3CaO.SiO ₂	C ₃ S	
Di-calcium Silicate	2CaO.SiO ₂	C_2S	
Tri-Calcium Aluminate	3CaO.Al ₂ .O ₃	C ₃ A	
Tetra-Calcium-Aluminoferrite	4CaO.Al ₂ O3.2Fe ₂ O ₃	C ₄ AF	

Pozzolanic aterials – natural and calcined

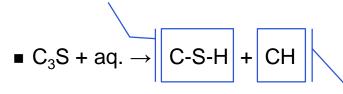
Pozolanic material properties

- Natural pozzolana contain siliceous and or silico aluminous composition, iron oxide and other oxides
- Reactive SiO₂ > 25% (KS EAS 18-1 cement standard)

Natural pozzolanas

Primarily volcanic with cementitious properties

Natural calcined pozzolanas


 Materials of volcanic origin, sedimentary rocks, clays, shales activated by thermal treatment.

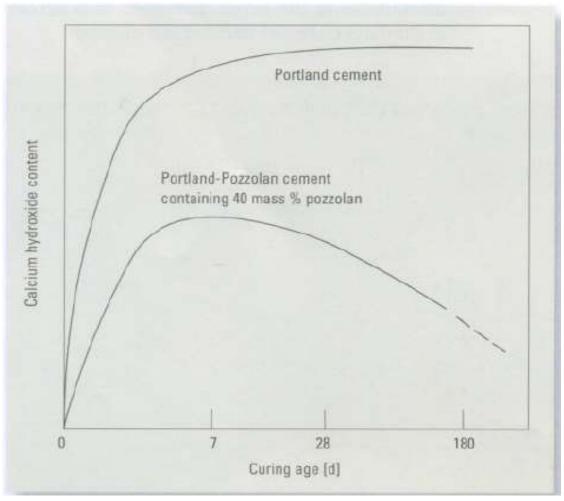


Pozzolanic reactions

Portland cement hydration

 $Ca(OH)_2$ – free lime - portlandite

Pozzolanic reaction


- Pozzolanic material reacts with liberated CH to give C-S-H (strength compounds)
- CH + S +aq. \rightarrow C-S-H
- Calcium Aluminate compounds also formed

- •Slower pozzolanic reaction
- •Lower rate of strength development
- •Lower heat of hydration

Portlandite consumption in pozzolana blend

Changes in the free lime content of a hydrating Portland pozzolanic cement

A member of LafargeHolcim

Source : Cement International, 4/2008 Vol 6.

Conventional form of sulphate attack

Mechanism

- Portland cement susceptible to attack by aq. solutions of sulphate salts (commonly magnesium, calcium and sodium) depending on
 - Concentrations of the sulphates
 - Presence of water
 - Characteristics of the concrete such as permeability
 - Calcium hydroxide and Calcium Aluminate Hydrate
- Sulphate attack on freelime

■
$$SO_4^{2-}$$
 + $Ca(OH)_2$ → $CaSO_4.2H_2O$
CH (Portlandite)

Gypsum (Calcium Sulphate dihydrate)

Sulphate and magnesium attack

Sulphate attack on C-A-H (Calcium Aluminate Hydrate)

 SO_4^{2-} + C-A-H \rightarrow 3CaO.Al₂O₃.3CaSO₄.31H₂O

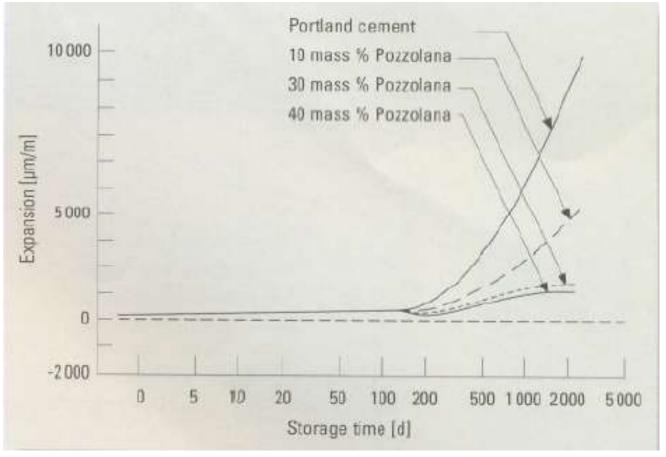
calcium sulfo-aluminate hydrate (ettringite)

Magnesium attack on CH

• $Mg^{2+} + CH \rightarrow Mg(OH)_2$

Magnesium hydroxide (brucite) – low solubility

- Gypsum, brucite and ettringite occupy greater volume
 - Cause expansion
 - Cause extensive cracking
 - Loss of bond between the cement paste and aggregate
 - Reaction leads to loss of strength in Hardened Cement paste resulting in spalling and crumbling.


Sulphate and magnesium attack

Beneficial effects of pozzolana in sulphate resistance

- Dilution effect of available C₃A in cement (hydrates to C-A-H)
- Dilution of clinker to lower evolved Ca(OH)₂ component
- Reacts with Ca(OH)₂ rendering it largely unavailable for attack by sulphates
- Enhances durability of concrete exposed to sea water/water bodies containing sulphates
- Pozzolanic reactions reduce permeability by sealing effect
 - Less permeable, better resistance to attacks by other external agents i.e. chlorides, CO₂ etc.

Sulphate resistance

Source : Cement International, 4/2008 Vol 6.

Effect on the sulphate expansion of a 1:3 mortar in a solution containing 1 mass % of MgSO₄ replacing Portland cement by an Italian natural pozzolan.

Bamburi cement Part of you. From the start A member of LafargeHolcim

Sulphate resistance

Cement Type	Compressive strength before immersion [MPa]	Compressive strength after immersion [MPa]	Strength Loss	
Portland cement (OPC)	18.0	6.1	65%	
Santorin Earth (10% mass)	18.5	9.5	49%	
Santorin Earth (20% mass)	16.1	12.9	20%	
Santorin Earth (30% mass)	15.2	12.8	16%	

Source : Cement International, 4/2008 Vol 6.

Compressive strength loss of cement paste cylinders in sulfate solution held at constant pH

Sulphate resistance

Approach of KS EAS 18-1 (EN 197-1)

K - clinker		Notation of the seven products (types of sulfate resisting common cement)		Composition (percentage by mass ^a)				
	Main types			Main constituents				1000
				Clinker B K	Blast furnace slag		Siliceous fly ash	Minor additional constituents
					S P	v		
SR 0 : C_3A of K = 0% SR 3 : C_3A of K = 3% SR 5 : C_3A of K = 5%	CEMI	Sulfate resisting Portland cement	CEM I-SR 0 CEM I-SR 3 CEM I-SR 5	95 – 100				0 – 5
No C ₃ A requirement -	Sulfate resisting blast furnace cement	CEM III/B-SR	20 – 34	66 – 80	-	-	0 - 5	
		CEM III/C-SR	5 – 19	81 – 95	-	-	0 – 5	
C ₃ A of K < 9%	Sulfate ^b CEM IV/A-S	CEM IV/A-SR	65 – 79		<=== 21	- 35 =>	0-5	
			CEM IV/B-SR	45 - 64		<── 36	- 55 ==>	0 – 5

The use of blended cements has significant advantages in the durability of concrete structures that can be exploited at design stage. Concrete designs should endeavor to incorporate durability performance concepts.

Thank you

